Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
1.
Insights Imaging ; 15(1): 116, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735009

ABSTRACT

OBJECTIVES: To investigate the value of extracellular volume (ECV) derived from portal-venous phase (PVP) in predicting prognosis in locally advanced pancreatic cancer (LAPC) patients receiving intraoperative radiotherapy (IORT) with initial stable disease (SD) and to construct a risk-scoring system based on ECV and clinical-radiological features. MATERIALS AND METHODS: One hundred and three patients with LAPC who received IORT demonstrating SD were enrolled and underwent multiphasic contrast-enhanced CT (CECT) before and after IORT. ECV maps were generated from unenhanced and PVP CT images. Clinical and CT imaging features were analyzed. The independent predictors of progression-free survival (PFS) determined by multivariate Cox regression model were used to construct the risk-scoring system. Time-dependent receiver operating characteristic (ROC) curve analysis and the Kaplan-Meier method were used to evaluate the predictive performance of the scoring system. RESULTS: Multivariable analysis revealed that ECV, rim-enhancement, peripancreatic fat infiltration, and carbohydrate antigen 19-9 (CA19-9) response were significant predictors of PFS (all p < 0.05). Time-dependent ROC of the risk-scoring system showed a satisfactory predictive performance for disease progression with area under the curve (AUC) all above 0.70. High-risk patients (risk score ≥ 2) progress significantly faster than low-risk patients (risk score < 2) (p < 0.001). CONCLUSION: ECV derived from PVP of conventional CECT was an independent predictor for progression in LAPC patients assessed as SD after IORT. The scoring system integrating ECV, radiological features, and CA19-9 response can be used as a practical tool for stratifying prognosis in these patients, assisting clinicians in developing an appropriate treatment approach. CRITICAL RELEVANCE STATEMENT: The scoring system integrating ECV fraction, radiological features, and CA19-9 response can track tumor progression in patients with LAPC receiving IORT, aiding clinicians in choosing individual treatment strategies and improving their prognosis. KEY POINTS: Predicting the progression of LAPC in patients receiving IORT is important. Our ECV-based scoring system can risk stratifying patients with initial SD. Appropriate prognostication can assist clinicians in developing appropriate treatment approaches.

2.
Cell Death Dis ; 15(4): 260, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609357

ABSTRACT

Breast cancer has the highest global incidence and mortality rates among all cancer types. Abnormal expression of the Annexin family has been observed in different malignant tumors, including upregulated ANXA9 in breast cancer. We found highly expressed ANXA9 in metastatic breast cancer tissues, which is correlated with breast cancer progression. In vitro, the functional experiments indicated ANXA9 influenced breast cancer proliferation, motility, invasion, and apoptosis; in vivo, downregulation of ANXA9 suppressed breast cancer xenograft tumor growth and lung metastasis. Mechanically, on one side, we found that ANXA9 could mediate S100A4 and therefore regulate AKT/mTOR/STAT3 pathway to participate p53/Bcl-2 apoptosis; on the other side, we found ANXA9 transferred S100A4 from cells into the tumor microenvironment and mediated the excretion of cytokines IL-6, IL-8, CCL2, and CCL5 to participate angiogenesis via self- phosphorylation at site Ser2 and site Thr69. Our findings demonstrate significant involvement of ANXA9 in promoting breast cancer progression, thereby suggesting that therapeutic intervention via targeting ANXA9 may be effective in treating metastatic breast cancer.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Humans , Female , Breast Neoplasms/genetics , Breast , Phosphorylation , Down-Regulation , Tumor Microenvironment , S100 Calcium-Binding Protein A4 , Annexins , STAT3 Transcription Factor
3.
Nat Struct Mol Biol ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658622

ABSTRACT

The PIWI-interacting RNA (piRNA) pathway is an adaptive defense system wherein piRNAs guide PIWI family Argonaute proteins to recognize and silence ever-evolving selfish genetic elements and ensure genome integrity. Driven by this intensive host-pathogen arms race, the piRNA pathway and its targeted transposons have coevolved rapidly in a species-specific manner, but how the piRNA pathway adapts specifically to target silencing in mammals remains elusive. Here, we show that mouse MILI and human HILI piRNA-induced silencing complexes (piRISCs) bind and cleave targets more efficiently than their invertebrate counterparts from the sponge Ephydatia fluviatilis. The inherent functional differences comport with structural features identified by cryo-EM studies of piRISCs. In the absence of target, MILI and HILI piRISCs adopt a wider nucleic-acid-binding channel and display an extended prearranged piRNA seed as compared with EfPiwi piRISC, consistent with their ability to capture targets more efficiently than EfPiwi piRISC. In the presence of target, the seed gate-which enforces seed-target fidelity in microRNA RISC-adopts a relaxed state in mammalian piRISC, revealing how MILI and HILI tolerate seed-target mismatches to broaden the target spectrum. A vertebrate-specific lysine distorts the piRNA seed, shifting the trajectory of the piRNA-target duplex out of the central cleft and toward the PAZ lobe. Functional analyses reveal that this lysine promotes target binding and cleavage. Our study therefore provides a molecular basis for the piRNA targeting mechanism in mice and humans, and suggests that mammalian piRNA machinery can achieve broad target silencing using a limited supply of piRNA species.

4.
Abdom Radiol (NY) ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642093

ABSTRACT

PURPOSE: To evaluate the role of the magnetic resonance imaging (MRI) Liver Imaging Reporting and Data System (LI-RADS) version 2018 features and clinical-pathological factors for predicting the prognosis of alpha-fetoprotein (AFP)-negative (≤ 20 ng/ml) hepatocellular carcinoma (HCC) patients, and to compare with other traditional staging systems. METHODS: We retrospectively enrolled 169 patients with AFP-negative HCC who received preoperative MRI and hepatectomy between January 2015 and August 2020 (derivation dataset:validation dataset = 118:51). A prognostic model was constructed using the risk factors identified via Cox regression analysis. Predictive performance and discrimination capability were evaluated and compared with those of two traditional staging systems. RESULTS: Six risk factors, namely the LI-RADS category, blood products in mass, microvascular invasion, tumor size, cirrhosis, and albumin-bilirubin grade, were associated with recurrence-free survival. The prognostic model constructed using these factors achieved C-index of 0.705 and 0.674 in the derivation and validation datasets, respectively. Furthermore, the model performed better in predicting patient prognosis than traditional staging systems. The model effectively stratified patients with AFP-negative HCC into high- and low-risk groups with significantly different outcomes (p < 0.05). CONCLUSION: A prognostic model integrating the LI-RADS category, blood products in mass, microvascular invasion, tumor size, cirrhosis, and albumin-bilirubin grade may serve as a valuable tool for refining risk stratification in patients with AFP-negative HCC.

5.
Talanta ; 275: 126067, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38640522

ABSTRACT

The detection of pathogen viability is critically important to evaluate its infectivity. In the study, an integrated microfluidic chip based on dual-mode analytical strategy was developed to rapidly realize detection of bacteria activity (with Salmonella typhimurium, S.T, as a model analyte). Firstly, the composite probes, including deactivated phage modified magnetic beads and nano Pt-antimicrobial peptide (AMP) which can specifically recognize Gram-negative bacteria as nanozyme were prepared. When the composite probes are introduced into the chip together with target bacteria, after enrichment, oscillating and magnetic separation, they will conjugate with S.T and produce a magnetic sandwich complex. The complex can catalyze tetramethylbenzidine (TMB)-H2O2 to produce visible colorimetric signals which is correspondent to the total S.T content. Simultaneously, PtNPs in the complex can produce hydroxyl radical oxidation (∙OH) by decomposing H2O2. Under the synergistic action of ∙OH and AMP, the captured live S.T can be lysed to release ATP and emit bioluminescence signals which corresponds to the live S.T concentration. Therefore, the chip can simultaneously detect and image S.T at different viability in one test. The dual-mode assay demonstrated high sensitivity (≤33 CFU/mL), high specificity (identifying strain), signal amplification (5 folds) and short time (≤40min). The chip array can detect four samples in one test and exhibited advantages of high-integration, -sensitivity, -specificity and miniaturization, which are suitable to rapidly detect and image pathogen's viability in trace level. The replacement of phage probes can detect other bacteria. It has a wide prospect in pathogens screening.

6.
Nature ; 628(8006): 84-92, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538792

ABSTRACT

Wearable electronics with great breathability enable a comfortable wearing experience and facilitate continuous biosignal monitoring over extended periods1-3. However, current research on permeable electronics is predominantly at the stage of electrode and substrate development, which is far behind practical applications with comprehensive integration with diverse electronic components (for example, circuitry, electronics, encapsulation)4-8. Achieving permeability and multifunctionality in a singular, integrated wearable electronic system remains a formidable challenge. Here we present a general strategy for integrated moisture-permeable wearable electronics based on three-dimensional liquid diode (3D LD) configurations. By constructing spatially heterogeneous wettability, the 3D LD unidirectionally self-pumps the sweat from the skin to the outlet at a maximum flow rate of 11.6 ml cm-2 min-1, 4,000 times greater than the physiological sweat rate during exercise, presenting exceptional skin-friendliness, user comfort and stable signal-reading behaviour even under sweating conditions. A detachable design incorporating a replaceable vapour/sweat-discharging substrate enables the reuse of soft circuitry/electronics, increasing its sustainability and cost-effectiveness. We demonstrated this fundamental technology in both advanced skin-integrated electronics and textile-integrated electronics, highlighting its potential for scalable, user-friendly wearable devices.


Subject(s)
Electronics , Wearable Electronic Devices , Skin , Textiles , Electrodes
7.
Small Methods ; : e2301619, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488726

ABSTRACT

BiCuSeO is a promising oxygen-containing thermoelectric material due to its intrinsically low lattice thermal conductivity and excellent service stability. However, the low electrical conductivity limits its thermoelectric performance. Aliovalent element doping can significantly improve their carrier concentration, but it may also impact carrier mobility and thermal transport properties. Considering the influence of graphene on carrier-phonon decoupling, Bi0.88 Pb0.06 Ca0.06 CuSeO (BPCCSO)-graphene composites are designed. For further practical application, a rapid preparation method is employed, taking less than 1 h, which combines self-propagating high-temperature synthesis with spark plasma sintering. The incorporation of graphene simultaneously optimizes the electrical properties and thermal conductivity, yielding a high ratio of weighted mobility to lattice thermal conductivity (144 at 300 K and 95 at 923 K). Ultimately, BPCCSO-graphene composites achieve exceptional thermoelectric performance with a ZT value of 1.6 at 923 K, bringing a ≈40% improvement over BPCCSO without graphene. This work further promotes the practical application of BiCuSeO-based materials and this facile and effective strategy can also be extended to other thermoelectric systems.

8.
Diabetes ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394643

ABSTRACT

Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease. As many genes associate with DKD, multi-omics approaches were employed to narrow the list of functional genes, gene products and related pathways providing insights into the pathophysiological mechanisms of DKD. The Kidney Precision Medicine Project human kidney single-cell RNA-sequencing (scRNAseq) dataset and Mendeley Data on human kidney cortex biopsy proteomics were utilized. R package Seurat was used to analyze scRNAseq and subset proximal tubule cells. PathfindR was applied for pathway analysis in cell type-specific differentially expressed genes and R limma package was used to analyze differential protein expression in kidney cortex. A total of 790 differentially expressed genes were identified in proximal tubule cells, including 530 upregulated and 260 downregulated transcripts. Compared with differentially expressed proteins, 24 genes/proteins were in common. An integrated analysis combining protein quantitative trait loci (pQTL), GWAS hits (estimated glomerular filtration rate) and a plasma metabolomics analysis was performed using baseline metabolites predictive of DKD progression in our longitudinal Diabetes Heart Study samples. Aldo-keto reductase family 1 member A1 gene (AKR1A1) was revealed as a potential molecular hub for DKD cellular dysfunction in several cross-linked pathways featured by deficiency of this enzyme.

9.
Phys Chem Chem Phys ; 26(4): 3408-3414, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38204403

ABSTRACT

This work explores potential high-temperature superconductor materials in hydrogen-rich systems. Here, the crystal structure stabilities of ternary Ca-Sc-H systems under high-pressure (P = 100-250 GPa) and their superconductivities are investigated using the particle swarm optimization methodology combined with first-principles calculations. For the predicted candidate structures of Ca-Sc-H systems, the pressure-dependent phase diagram and thermodynamic convex hull were investigated across a wide range of compositions; the electronic properties of all the predicted phases were analyzed in detail to study the bonding behavior of these stable phases. We identified the crystal structures of four thermodynamically stable compounds: R3̄m-CaScH6, Immm-CaSc2H9,C2/m-Ca2ScH10, and R3̄m-CaScH12. Among them, R3̄m-CaScH12 was predicted to have the highest Tc value (i.e., 173 K) at 200 GPa. The discovery of this previously unreported pressure-induced decomposition of Ca-Sc-H systems will pave the way for investigations on the nature of hydrogen-metal interactions.

10.
Sci Adv ; 10(2): eadk6301, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38198552

ABSTRACT

Miniaturized mobile electronic system is an effective candidate for in situ exploration of confined spaces. However, realizing such system still faces challenges in powering issue, untethered mobility, wireless data acquisition, sensing versatility, and integration in small scales. Here, we report a battery-free, wireless, and miniaturized soft electromagnetic swimmer (SES) electronic system that achieves multiple monitoring capability in confined water environments. Through radio frequency powering, the battery-free SES system demonstrates untethered motions in confined spaces with considerable moving speed under resonance. This system adopts soft electronic technologies to integrate thin multifunctional bio/chemical sensors and wireless data acquisition module, and performs real-time water quality and virus contamination detection with demonstrated promising limits of detection and high sensitivity. All sensing data are transmitted synchronously and displayed on a smartphone graphical user interface via near-field communication. Overall, this wireless smart system demonstrates broad potential for confined space exploration, ranging from pathogen detection to pollution investigation.


Subject(s)
Electricity , Water Quality , Communication , Electric Power Supplies , Electronics
11.
Eur Radiol ; 34(1): 509-524, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37507611

ABSTRACT

OBJECTIVES: To investigate the efficiency of a combination of preoperative contrast-enhanced computed tomography (CECT) and carbohydrate antigen 19-9 (CA19-9) in predicting disease-free survival (DFS) after R0 resection of pancreatic ductal adenocarcinoma (PDAC). METHODS: A total of 138 PDAC patients who underwent curative R0 resection were retrospectively enrolled and allocated chronologically to training (n = 91, January 2014-July 2019) and validation cohorts (n = 47, August 2019-December 2020). Using univariable and multivariable Cox regression analyses, we constructed a preoperative clinicoradiographic model based on the combination of CECT features and serum CA19-9 concentrations, and validated it in the validation cohort. The prognostic performance was evaluated and compared with that of postoperative clinicopathological and tumor-node-metastasis (TNM) models. Kaplan-Meier analysis was conducted to verify the preoperative prognostic stratification performance of the proposed model. RESULTS: The preoperative clinicoradiographic model included five independent prognostic factors (tumor diameter on CECT > 4 cm, extrapancreatic organ infiltration, CECT-reported lymph node metastasis, peripheral enhancement, and preoperative CA19-9 levels > 180 U/mL). It better predicted DFS than did the postoperative clinicopathological (C-index, 0.802 vs. 0.787; p < 0.05) and TNM (C-index, 0.802 vs. 0.711; p < 0.001) models in the validation cohort. Low-risk patients had significantly better DFS than patients at the high-risk, defined by the model preoperatively (p < 0.001, training cohort; p < 0.01, validation cohort). CONCLUSIONS: The clinicoradiographic model, integrating preoperative CECT features and serum CA19-9 levels, helped preoperatively predict postsurgical DFS for PDAC and could facilitate clinical decision-making. CLINICAL RELEVANCE STATEMENT: We constructed a simple model integrating clinical and radiological features for the prediction of disease-free survival after curative R0 resection in patients with pancreatic ductal adenocarcinoma; this novel model may facilitate preoperative identification of patients at high risk of recurrence and metastasis that may benefit from neoadjuvant treatments. KEY POINTS: • Existing clinicopathological predictors for prognosis in pancreatic ductal adenocarcinoma (PDAC) patients who underwent R0 resection can only be ascertained postoperatively and do not allow preoperative prediction. • We constructed a clinicoradiographic model, using preoperative contrast-enhanced computed tomography (CECT) features and preoperative carbohydrate antigen 19-9 (CA19-9) levels, and presented it as a nomogram. • The presented model can predict disease-free survival (DFS) in patients with PDAC better than can postoperative clinicopathological or tumor-node-metastasis (TNM) models.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , CA-19-9 Antigen , Disease-Free Survival , Retrospective Studies , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/surgery , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/surgery , Prognosis , Tomography, X-Ray Computed/methods , Carbohydrates
12.
Nat Commun ; 14(1): 7539, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37985765

ABSTRACT

The rapid diagnosis of respiratory virus infection through breath and blow remains challenging. Here we develop a wireless, battery-free, multifunctional pathogenic infection diagnosis system (PIDS) for diagnosing SARS-CoV-2 infection and symptom severity by blow and breath within 110 s and 350 s, respectively. The accuracies reach to 100% and 92% for evaluating the infection and symptom severity of 42 participants, respectively. PIDS realizes simultaneous gaseous sample collection, biomarker identification, abnormal physical signs recording and machine learning analysis. We transform PIDS into other miniaturized wearable or portable electronic platforms that may widen the diagnostic modes at home, outdoors and public places. Collectively, we demonstrate a general-purpose technology for rapidly diagnosing respiratory pathogenic infection by breath and blow, alleviating the technical bottleneck of saliva and nasopharyngeal secretions. PIDS may serve as a complementary diagnostic tool for other point-of-care techniques and guide the symptomatic treatment of viral infections.


Subject(s)
Body Fluids , COVID-19 , Humans , SARS-CoV-2 , COVID-19/diagnosis , Specimen Handling , Saliva
13.
ACS Nano ; 17(21): 21947-21961, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37917185

ABSTRACT

Deaf-blindness limits daily human activities, especially interactive modes of audio and visual perception. Although the developed standards have been verified as alternative communication methods, they are uncommon to the nondisabled due to the complicated learning process and inefficiency in terms of communicating distance and throughput. Therefore, the development of communication techniques employing innate sensory abilities including olfaction related to the cerebral limbic system processing emotions, memories, and recognition has been suggested for reducing the training level and increasing communication efficiency. Here, a skin-integrated and wireless olfactory interface system exploiting arrays of miniaturized odor generators (OGs) based on melting/solidifying odorous wax to release smell is introduced for establishing an advanced communication system between deaf-blind and non-deaf-blind. By optimizing the structure design of the OGs, each OG device is as small as 0.24 cm3 (length × width × height of 11 mm × 10 mm × 2.2 mm), enabling integration of up to 8 OGs on the epidermis between nose and lip for direct and rapid olfactory drive with a weight of only 24.56 g. By generating single or mixed odors, different linked messages could be delivered to a user within a short period in a wireless and programmable way. By adopting the olfactory interface message delivery system, the recognition rates for the messages have been improved 1.5 times that of the touch-based method, while the response times were immensely decreased 4 times. Thus, the presented wearable olfactory interface system exhibits great potential as an alternative message delivery method for the deaf-blind.


Subject(s)
Odorants , Smell , Humans , Smell/physiology , Learning , Skin , Electronics
14.
J Immunol Res ; 2023: 5577850, 2023.
Article in English | MEDLINE | ID: mdl-37781475

ABSTRACT

There remains a lack of standard models that have all the characteristics of human diseases. Especially in immunological hepatic fibrosis, the bovine serum albumin (BSA)-induced liver fibrosis models have the same developmental mechanisms as human liver fibrosis models, but have received little attention. We standardized a BSA-induced liver fibrosis model in rats and thoroughly assessed its pathological characteristics. We also used 16S sequencing to assess homeostasis of the intestinal microflora of rats with BSA-induced liver fibrosis and detected various differential metabolites in the serum of these rats using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). We observed stable and unambiguous histological changes in liver tissue morphology and remarkably high concentrations of inflammatory markers in the serum of BSA-induced liver fibrosis rats. In keeping with the fact that BSA induction can cause gut microbiota disorders in rats. UHPLC-MS/MS analysis of rat serum samples in positive-ion mode and negative-ion mode revealed 17 and 25 differential metabolites, respectively. Network analysis revealed that phenylalanine or tyrosine metabolites (e.g., PAGln) were the predominant metabolites in the sera of BSA-induced liver fibrosis rats. Taken together, our results suggest that disorders of amino acid metabolism caused by the gut microbiota may play an important role in the progression of immunological hepatic fibrosis.


Subject(s)
Liver Cirrhosis , Tandem Mass Spectrometry , Rats , Humans , Animals , Tandem Mass Spectrometry/methods , Liver Cirrhosis/pathology , Metabolome , Chromatography, High Pressure Liquid/methods
15.
Microsyst Nanoeng ; 9: 124, 2023.
Article in English | MEDLINE | ID: mdl-37814608

ABSTRACT

Muscle groups perform their functions in the human body via bilateral muscle actuation, which brings bionic inspiration to artificial robot design. Building soft robotic systems with artificial muscles and multiple control dimensions could be an effective means to develop highly controllable soft robots. Here, we report a bilateral actuator with a bilateral deformation function similar to that of a muscle group that can be used for soft robots. To construct this bilateral actuator, a low-cost VHB 4910 dielectric elastomer was selected as the artificial muscle, and polymer films manufactured with specific shapes served as the actuator frame. By end-to-end connecting these bilateral actuators, a gear-shaped 3D soft robot with diverse motion capabilities could be developed, benefiting from adjustable actuation combinations. Lying on the ground with all feet on the ground, a crawling soft robot with dexterous movement along multiple directions was realized. Moreover, the directional steering was instantaneous and efficient. With two feet standing on the ground, it also acted as a rolling soft robot that can achieve bidirectional rolling motion and climbing motion on a 2° slope. Finally, inspired by the orbicularis oris muscle in the mouth, a mouthlike soft robot that could bite and grab objects 5.3 times of its body weight was demonstrated. The bidirectional function of a single actuator and the various combination modes among multiple actuators together allow the soft robots to exhibit diverse functionalities and flexibility, which provides a very valuable reference for the design of highly controllable soft robots.

16.
Eur J Radiol ; 168: 111146, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37832198

ABSTRACT

OBJECTIVES: The purpose of this study was to establish a model for predicting the prognosis of patients with microvascular invasion (MVI)-negative hepatocellular carcinoma (HCC) based on qualitative and quantitative analyses of Gd-EOB-DTPA magnetic resonance imaging (MRI). MATERIALS AND METHODS: Consecutive patients with MVI-negative HCC who underwent preoperative Gd-EOB-DTPA MRI between January 2015 and December 2019 were retrospectively enrolled.In total, 122 patients were randomly assigned to the training and validation groups at a ratio of 7:3. Univariate and multivariate logistic regression analyses were performed to identify significant clinical parameters and MRI features, including quantitative and qualitative parameters associated with prognosis, which were incorporated into a predictive nomogram. The end-point of this study was recurrence-free survival. Outcomes were compared between groups using the Kaplan-Meier method with the log-rank test. RESULTS: During a median follow-up period of 58.86 months, 38 patients (31.15 %) experienced recurrence. Multivariate analysis revealed that lower relative enhancement ratio (RER), hepatobiliary phase hypointensity without arterial phase hyperenhancement, Liver Imaging Reporting and Data System category, mild-moderate T2 hyperintensity, and higher aspartate aminotransferase levels were risk factors associated with prognosis and then incorporated into the prognostic model. C-indices for training and validation groups were 0.732 and 0.692, respectively. The most appropriate cut-off value for RER was 1.197. Patients with RER ≤ 1.197 had significantly higher postoperative recurrence rates than those with RER > 1.197 (p = 0.004). CONCLUSION: The model integrating qualitative and quantitative imaging parameters and clinical parameters satisfactorily predicted the prognosis of patients with MVI-negative HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/surgery , Carcinoma, Hepatocellular/blood supply , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Liver Neoplasms/blood supply , Prognosis , Retrospective Studies , Contrast Media , Gadolinium DTPA , Magnetic Resonance Imaging/methods
17.
Org Biomol Chem ; 21(33): 6757-6761, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37615101

ABSTRACT

A metal-free protocol for the direct construction of C(sp2)-N and C-O bonds via a PhI(OAc)2-mediated dehydrogenative aminoacyloxylation of ß,γ-unsaturated hydrazones with Togni reagent II is reported. Initiated by the carboxyl-containing species generated in situ from Togni reagent II, this method offers a new solution for regioselective functionalization at a remote site on ß,γ-unsaturated hydrazones, thus providing a straightforward method for the synthesis of acyloxyl-substituted pyridazines. This reaction features a broad substrate scope and mild conditions.

18.
Nat Commun ; 14(1): 5009, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37591881

ABSTRACT

Continuous monitoring of arterial blood pressure (BP) outside of a clinical setting is crucial for preventing and diagnosing hypertension related diseases. However, current continuous BP monitoring instruments suffer from either bulky systems or poor user-device interfacial performance, hampering their applications in continuous BP monitoring. Here, we report a thin, soft, miniaturized system (TSMS) that combines a conformal piezoelectric sensor array, an active pressure adaptation unit, a signal processing module, and an advanced machine learning method, to allow real wearable, continuous wireless monitoring of ambulatory artery BP. By optimizing the materials selection, control/sampling strategy, and system integration, the TSMS exhibits improved interfacial performance while maintaining Grade A level measurement accuracy. Initial trials on 87 volunteers and clinical tracking of two hypertension individuals prove the capability of the TSMS as a reliable BP measurement product, and its feasibility and practical usability in precise BP control and personalized diagnosis schemes development.


Subject(s)
Hypertension , Wearable Electronic Devices , Humans , Arterial Pressure , Blood Pressure , Hypertension/diagnosis , Arteries
19.
Abdom Radiol (NY) ; 48(11): 3362-3372, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37561148

ABSTRACT

PURPOSE: To evaluate the histogram parameters of preoperative multiparametric magnetic resonance imaging (MRI) and clinical-radiological (CR) characteristics as prognostic predictors in patients with solitary hepatocellular carcinoma ≤ 5 cm and to determine the optimal time window for histogram analysis. METHODS: We retrospectively included 151 patients who underwent preoperative MRI between January 2012 and December 2017. All patients were randomly separated into training and validation cohorts (n = 105 and 46). Eight whole-lesion histogram parameters were extracted from T2-weighted images, apparent diffusion coefficient maps, and dynamic contrast-enhanced images. Univariate and multivariate logistic regression analyses were performed to evaluate these histogram parameters and CR variables related to early recurrence (ER) and recurrence-free survival. A nomogram was derived from the clinical-radiological-histogram (CRH) model that incorporated these risk factors. Kaplan-Meier survival analysis was performed to evaluate the prognostic performance of the CRH model. RESULTS: In total, 151 patients (male: female, 130: 21; median age, 54.46 ± 9.09 years) were evaluated. Multivariate logistic regression analysis revealed that the significant risk factors of ER were Mean Absolute Deviation and Minimum in the histogram analysis of the delayed phase images, as well as three important CR variables: albumin-bilirubin grade, microvascular invasion, and tumor size. The nomogram built by incorporating these risk factors showed satisfactory predictive ability in the training and validation cohorts with AUC values of 0.747 and 0.765, respectively. Furthermore, the prognostic nomogram can effectively classify patients into high- and low-risk groups (p < 0.05). CONCLUSION: Multiparametric MRI-derived histogram parameters provide additional value in predicting patient prognosis. The CRH model may be a useful and noninvasive method for achieving prognostic stratification and personalized disease management.

20.
Behav Sci (Basel) ; 13(7)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37503987

ABSTRACT

As a psychological resource of individuals, trait mindfulness is valuable in facilitating individuals to maintain attention intensity, increase efficiency, and alleviate stress and depression. It can also buffer against the risk factors of addictive behaviors. However, applied research combining trait mindfulness and smartphone addiction with the use of psychological resources is relatively scarce and needs further examination. We constructed a moderated mediation model based on compensatory Internet use and conservation of resources theory (OCR) to examine the effects of social anxiety on adolescent smartphone addiction and to describe how trait mindfulness "works" and "in what contexts it works better". We analyzed 1570 adolescent subjects through a multistage stratified sampling method. Our findings revealed that social anxiety positively predicted smartphone addiction, while trait mindfulness was negatively associated with it. Furthermore, trait mindfulness mitigated smartphone addiction by reducing social anxiety, suggesting a mediating effect of social anxiety on this relationship. Meanwhile, the mediating effect was more pronounced among adolescents with left-behind experience; we found that left-behind experience partially moderated the relationship between social anxiety and smartphone addiction. Adolescents with left-behind experience had more significant compensatory media use with a higher risk of smartphone addiction. This study highlights the potential protective role of trait mindfulness in the development and maintenance of adolescent smartphone addiction. It provides empirical support for applying resource conservation theory and stress buffering theory in this context.

SELECTION OF CITATIONS
SEARCH DETAIL
...